
ACCELERATING
ASYNCHRONOUS EVENTS

FOR HYBRID PARALLEL RUNTIMES

Kyle C. Hale and Peter Dinda

1

v3vee.org v3vee.org/palacios

nautilus.halek.co

2

SOFTWARE EVENTS

event occurs
in some

execution
context

another
execution

context takes
action based

on event

for example, a thread

3

SOME TYPES OF EVENTS

message arrival

work is completed

work is available

something terrible happened

4

5

AN EXAMPLE: LEGION

thread
0

thread
1

thread
2

CPU 0 CPU 1 CPU2

pthread
worker threads: waiting for work (pthread_cond_wait())

unit of
work pthread_cond_broadcast()

RACE

ASYNCHRONOUS EVENTS

the receiving side is not blocked

6

other things can run

WE WANT FAST EVENTS

moment of
event trigger

first
instruction of
event handling

code

}
notification latency

we want to minimize this
7

WHAT’S THE LOWER LIMIT?

light!

8

what we want: SoL†

what we actually get with
existing software events: SoL††

†speed of light
 ††s**t out of luck

9

OUTLINE

10

software abstractions for asynchronous events

hardware capabilities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

CPU ready queue

CONDITION VARIABLES

cond.
var

queue

thread

pthread_cond_wait() thread

pthread_cond_signal()

running

scheduling delay

11

CPU 0
ready queue

CPU 1
ready queue

BROADCAST

cond.
var

queue

thread

thread

thread

pthread_cond_broadcast()

12

IMMEDIATELY VISIBLE ISSUES

we’re at the behest of the scheduler

broadcast is linear in number of waiters

we can’t tell scheduler to initiate a
“fast” wakeup

13

OUTLINE

14

software abstractions for asynchronous events

hardware capabilities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

WHAT CAN WE DO IN
HARDWARE?

inter-processor interrupts (IPIs)

15

int vector n

IDT

handler
code

n

first instruction executed on receiving end

IPIS ARE FAST

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1200 1400 1600 1800 2000 2200 2400

C
D

F

Cycles mesaured from BSP (core 0)

95th percentile = 1728 cycles

socket

NUMA domain

physical core

logical core

OUTLINE

17

software abstractions for asynchronous events

hardware capabilities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

MEASURING EVENT WAKEUP
LATENCY

18

event
trigger

first
instruction
of handler

core 0 core i

read_start_time()

read_end_time()

MEASURING EVENT
BROADCAST LATENCY

19

event
trigger

first
instruction
of handler

core 0 core i

read_start_time()

read_end_time_i()first
instruction
of handler

core j

first
instruction
of handler

core k read_end_time_j()read_end_time_k()

EXISTING SOFTWARE EVENTS
ARE SLOW

20

 0

 5000

 10000

 15000

 20000

 25000

 30000

pth
rea

d c
on

dv
ar

fut
ex

 wak
eu

p

un
ica

st
IPI

µ = 25176.5

min = 1145
max = 29955
σ = 3698.93

µ = 24640.5
min = 81
max = 29996
σ = 3750.51

µ = 1572.68
min = 1150
max = 17397
σ = 523.279

C
yc

le
s

to
 W

ak
eu

p

16x

BROADCASTS ARE ALSO
TERRIBLE

21

 0

 500000

 1×106

 1.5×106

 2×106

 2.5×106

pth
rea

d c
on

dv
ar

fut
ex

 wak
eu

p

bro
ad

ca
st

IPI

µ = 995795

min = 17538
max = 2.17277e+06

σ = 544512

µ = 370630

min = 16402
max = 1.89553e+06

σ = 199680

µ = 12827.3

min = 1252
max = 57467

σ = 2931.32

C
yc

le
s

to
 W

ak
eu

p

29x

SYNCHRONY

22

for broadcasts, we want events to be delivered
to all cores at the same time

useful for, e.g. BSP apps with events

measure the deviation of wakeup time across
cores in a broadcast

SYNCHRONY

23

70x difference between hardware IPIs and
software mechanisms

hardly any predictability!

24

OUTLINE

25

software abstractions for asynchronous events

hardware capabilities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

NAUTILUS

26

Paging Thread Misc Timers

Hardware

Ints

A
er

ok
er

ne
l

Topo Synch/
Events

Kernel Mode
User Mode (Nothing)

H
R

T

K
er

ne
l

Alloc

Parallel Runtime

Parallel Application

Full Privileged HW Access

[Hale, Dinda HPDC ’15]
[Hale, Dinda VEE ’16]

[Hale, Hetland, Dinda FRIDAY]

27

RETAINING FAMILIAR
INTERFACES

28

use a lightweight, kernel-mode framework
(like Nautilus) to eliminate overheads

maintain userspace interfaces (e.g. condition
variable wait,signal,broadcast etc.)

if we build our kernel from scratch,
how fast can we get?

NEMO HAS 2 COMPATIBLE CONDITION
VARIABLE IMPLEMENTATIONS

29

lightweight condition variables

leverage IPI access to “kick” the
scheduler

EXISTING SOFTWARE EVENTS
ARE SLOW

30

 0

 5000

 10000

 15000

 20000

 25000

 30000

pth
rea

d c
on

dv
ar

fut
ex

 wak
eu

p

un
ica

st
IPI

µ = 25176.5

min = 1145
max = 29955
σ = 3698.93

µ = 24640.5
min = 81
max = 29996
σ = 3750.51

µ = 1572.68
min = 1150
max = 17397
σ = 523.279

C
yc

le
s

to
 W

ak
eu

p

16x

NEMO SPEEDS THINGS UP

31

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar + IPI

unicast IP
I

µ = 25176.5
min = 1145
max = 29955
σ = 3698.93

µ = 24640.5
min = 81
max = 29996
σ = 3750.51

µ = 9128.78
min = 4195
max = 29990
σ = 3025.12

min = 4730
max = 6392
µ = 5348.51
σ = 290.006

min = 1150
max = 17397
µ = 1572.68
σ = 523.279

C
yc

le
s

to
 W

ak
eu

p

NEMO SPEEDS THINGS UP

32

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar + IPI

unicast IP
I

µ = 25176.5
min = 1145
max = 29955
σ = 3698.93

µ = 24640.5
min = 81
max = 29996
σ = 3750.51

µ = 9128.78
min = 4195
max = 29990
σ = 3025.12

min = 4730
max = 6392
µ = 5348.51
σ = 290.006

min = 1150
max = 17397
µ = 1572.68
σ = 523.279

C
yc

le
s

to
 W

ak
eu

p Nemo events

5x

BROADCASTS ARE ALSO
TERRIBLE

33

 0

 500000

 1×106

 1.5×106

 2×106

 2.5×106

pth
rea

d c
on

dv
ar

fut
ex

 wak
eu

p

bro
ad

ca
st

IPI

µ = 995795

min = 17538
max = 2.17277e+06

σ = 544512

µ = 370630

min = 16402
max = 1.89553e+06

σ = 199680

µ = 12827.3

min = 1252
max = 57467

σ = 2931.32

C
yc

le
s

to
 W

ak
eu

p

29x

NEMO BRINGS US CLOSER TO
IPI BROADCAST LATENCY

34

 0

 500000

 1×106

 1.5×106

 2×106

 2.5×106

pthread condvar

futex wakeup

Aerokernel condvar

Aerokernel condvar + IPI

broadcast IP
I

µ = 995795

min = 17538
max = 2.17277e+06

σ = 544512

µ = 370630

min = 16402
max = 1.89553e+06

σ = 199680

µ = 265820

min = 3258
max = 612959

σ = 159421

min = 7842
max = 464015
µ = 132417
σ = 98637.4

min = 1252
max = 57467
µ = 12827.3
σ = 2931.32

C
yc

le
s

to
 W

ak
eu

p

Nemo events

3x

SYNCHRONY

35

we can do 2x better than user-space
mechanisms

(with compatible interfaces)

OUTLINE

36

software abstractions for asynchronous events

hardware capabilities

event performance

NEMO: benefits of kernel mode

NEMO: closer to the hardware

WHAT IF WE GIVE UP THE
FAMILIAR INTERFACE?

37

modify condition variable semantics

we don’t necessarily care which context (thread)
receives the event, as long as it’s handled at a

particular core

not appropriate for all situations

ACTIVE MESSAGES

38

message

CPU memory

handler handle_msg()

claim: better fit than, e.g. cond vars, for many event-based
schemes

39

we want to use IPIs as an
active message substrate

problem: IPIs don’t have a payload!

40

allocate several event IDs

when core receives interrupt,
lookup the event ID in a table

indexed on core ID

core 0 core 1 … core n-1

Action Lookup Table
event
ID 3

nemo_notify_event(core=1,	event=3)

41

event ID corresponds to an “action” (a handler)

event ID 0

1

m-1

…

Action Descriptor Table

event ID 3

0xdeadbeef

handle_event()

NEMO WAKEUPS HAVE
CONSTANT OFFSET FROM IPIS

42

 0

 0.2

 0.4

 0.6

 0.8

 1

 1200 1400 1600 1800 2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
nemo event notify

95th% = 1728

95th% = 1824

~100 cycles

BROADCAST LATENCY ALSO
ON PAR WITH IPIS

43

 0

 5000

 10000

 15000

 20000

 25000

 30000

IPI b
roa

dc
as

t

Nem
o b

roa
dc

as
t

µ = 12792

min = 1252
max = 26838

σ = 2718.73

µ = 12958

min = 1376
max = 29703

σ = 2819.29

C
yc

le
s

to
 W

ak
eu

p

NEMO ACHIEVES TIGHT
SYNCHRONY

44

< 50 cycles variation in
broadcast wakeups between

cores

SUMMARY

45

if you want asynch. event delivery close to hardware
latency…

existing mechanisms are pretty terrible

SOME WAYS TO FIX IT:

throw out general purpose OS abstractions
(e.g. user/kernel boundary)

throw out typical event abstractions

use the hardware directly!

THANKS
http://halek.co

http://presciencelab.org

http://nautilus.halek.co

http://xstack.sandia.gov/hobbes

me

our lab

Nautilus

Hobbes Exascale
OS/R project

46

ありがとう

http://halek.co
http://presciencelab.org
http://nautilus.halek.co
http://xstack.sandia.gov/hobbes

BACKUPS

47

TIGHT SYNCHRONY FOR IPIS,
NOT FOR SOFTWARE EVENTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1×106

C
D

F

σ

pthread condvar
futex broadcast

broadcast IPI

48

70x

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1×106

C
D

F

σ

pthread condvar
futex broadcast
Aerokernel condvar
Aerokernel condvar + IPI
broadcast IPI

49

NEMO GETS US CLOSER

2x

NEMO ACHIEVES TIGHT
SYNCHRONY

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

C
D

F

σ

IPI broadcast
Nemo broadcast

 0

 0.2

 0.4

 0.6

 0.8

 1

 2
52

0

 2
61

0

 2
70

0

 2
79

0

~50 cycles

HOW FAST CAN A
NOTIFICATION BE IN H/W?

memory

poll!

thread

while	(!stuff	happened)

cache cache

51

thread

stuff	happened

cache invalidation (10s of cycles)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
synchronous event (mem polling)

Unicast IPI vs memory polling 52

coherence network

interrupt network

WHY THE GAP?

53

54

we’re bounded by interrupt handling logic in
the hardware

IPI cost breakdown

destination handling

time on wire
APIC write

note: these are indirectly measured

55

we used to have a problem like this with
INT80 syscalls…

solution: introduce a new
instruction, skip a lot of the

interrupt handling logic

56

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Cycles mesaured from BSP (core 0)

unicast IPI
synchronous event (mem polling)
projected remote syscall

cost of dest.
handling

